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1 The SDE and its Transition Density

Start with the SDE defined by
dXt = [L(Xt)dt + O'(Xt)th.
The transition density p(z,t|y, s) is defined by

[ pletlyds = PriXie. € ax. =y
A
= Pr [Xf S A|XO = y] .

The density p(z,t|y, s) is time-invariant since u(X;) and o(X;) are assumed to
be time invariant, and consequently, that X; is assumed to be stationary.

2 Derivation of the Equation

Consider a differentiable function V (X, t) = V(z,t) with V(X;,¢) = 0 for

t ¢ (0,7). Then by Itd’s Lemma
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where p = u(X;) and o = o(X;) for notational convenience. Take the condi-
tional expectation of both sides of equation (1) given Xj

EV(Xr,T) = V(Xo,0)] (2)
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In this note, all expectations are expectations conditional on Xy, so that E[-] =
E[|Xo = y]. Since E [dW;] = 0, the second term in the middle line of equation
(2) drops out. Hence, we can write equation (2) as three integrals
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where p = p(z, t|y, s) for notational convenience. The objective of the derivation
is to apply integration by parts to get rid of the derivatives of V.

2.1 Evaluation of the Integrals

The trick is that I is evaluated using integration by parts on ¢, while I and I3
are each evaluated using integration by parts on x.

2.1.1 Evaluation of I;

Use u = p,v' = %—‘; so that v’ = % and v = V. Hence for the inside integrand

of I; we have
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since at the boundaries 0 and T, V = 0. Hence

/R/OT %V(x,t)dtdz. (3)

Change the order of integration in I and write it as

I, = / / pu—dmdt

2.1.2 Evaluation of I,

Use integration by parts on the integrand, with u = pu,v’ = %—‘; so that v/ =
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Hence the integral can be evaluated as
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2.1.3 Evaluation of I3

Finally, the evaluation of the integrand of I3 requires the application of inte-
gration by parts on x twice. This is because in the integrand we want to get

82‘2{ term and end up with V(x,t) only. Again, change the order of

integration and write I3 as
e , 0%V
- ——dzdt.
2y Jor




For the first integration by parts use v = po?,v’ = %1‘2/ ((’;‘7 ) and
v = %. Hence the integrand can be written
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This implies that I3 can be written as

/ / 328332 Vdadt = / / M V(x, t)didz. (5)

2.1.4 Obtaining the Equation

Substitute equations (3), (4), and (5) into equation (2)

EV(Xp,T)] = V(X0,0)
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Since V (X, t) = 0 for ¢t ¢ (0,T) we have V(X7,T) = V(X0,0) = 0 so that
E[V(Xr,T)] — V(Xo) = 0. This implies that the portion of the integrand in

the brackets is zero 0 o
_Op _0pp) | 10%(po7) _
ot oz 2 Ox2

from which the Fokker-Planck equation can be obtained
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